Server Provisioning

 Citadel

e Bookstack

e Java JAR Command

e systemd Timer

e Bookstack Backup

o Citadel Backup

e Full Server Backup

e Tox Bootstrap Node on Debian
e Nginx Reverse UDP & TCP Proxy
e Install Git via PowerShell

e Create a flash drive image

e Resize a flash drive image

e BibleSD Duplication

e Partial microSD Image

e Installing BibleSuperSearch on Debian

Citadel

Install Citadel:

curl https: //easyinstall. citadel. org/install | bash

Answer questions during automated install:

e admin: #### (admin for webcit)

admin password: #### (admin webcit password)
user: #### (internal use citadel user)

port: 504 (internal use citadel port)

http: 4480 (to keep behind VPN)

https: 4434

Open ports to VPN only (for now):

sudo ufw allow in on <vpn _interface> to any port 4480

sudo ufw allow in on <vpn interface> to any port 4434

WebCit configuration:

Login via HTTP over VPN (browser, 4480)
Reduce privileges of default registered user
Set up accounts and mail forwarding

Configure site configuration > fully qualified domain name and node name to
<domain name>

Configure domain names > local host aliases to receive email to <domain name> and
mail. <domain name>

Symbolic links to Let's Encrypt certificate:

ln -sfv /etc/letsencrypt/live/wilsons. life/privkey. pem /usr/local/citadel/keys/citadel. key
ln -sfv /etc/letsencrypt/live/wilsons. life/fullchain. pem /usr/local/citadel/keys/citadel. cer

Configure nginx reverse proxy:

location /citadel/ {
proxy set header Host $host;
proxy_pass http: //127.0. 0. 1: 4480/;

proxy redirect off;

location /static/ {
proxy set header Host $host;
proxy pass http: //127.0. 0. 1: 4480/static/;

proxy redirect off;

Open external ports:

sudo ufw allow <port to open>/<protocol>

Double check with sudo netstat -tunlp to make sure citadel is serving on all ports before
opening them. Sometimes it takes a sudo systemctl restart citadel to get it going.

SMTP:
25/tcp
465/tcp
587/tcp

IMAP:

143/tcp
993/tcp

XMPP:

5222

Bookstack

Installing Bookstack:

https://jardin.icamole.fr/books/bookstack/page/installation

note: corrected install command at php8.2: apt-get install php8.2 php8. 2-xml libapache2-
mod- php8. 2 php8. 2- fpm php8. 2-curl php8. 2-mbstring php8. 2- ldap php8. 2- tidy php8. 2-zip php8. 2-
gd php8.2-mysql git

Change apache2 to listen on port 5080 (<IfModule ssl_module> 5443) in the following files:

nano /etc/apache2/ports. conf
nano /etc/apache2/sites-enabled/000-default. conf

Disable 000-default.conf with /usr/sbin/a2dissite 000-default. conf

Configure nano /var/www/bookstack/. env :
APP_URL=https: //wilsons. life/bookstack/

Mail settings:
Mail system to use
Can be 'smtp' or 'sendmail

MAIL DRIVER=smtp

Mail sender details
MAIL FROM NAME="BookStack"
MAIL FROM=bookstack@wilsons. life

SMTP mail options

These settings can be checked using the "Send a Test Email"

feature found in the "Settings > Maintenance" area of the system
MAIL HOST=mail. wilsons. life

MAIL PORT=587

MAIL USERNAME=bookstack

MAIL PASSWORD=<mail account password>

MAIL ENCRYPTION=tls

https://jardin.icamole.fr/books/bookstack/page/installation

Update nginx reverse proxy:

location /bookstack/ {
proxy set header Host $host;
proxy pass http: //127.0. 0. 1: 5080/;

proxy redirect off;

Also added the same reverse proxy settings for location /, so the bookstack becomes the
default site

Java JAR Command

Creating a JAR

The following creates a jar file and sets the entry point in Manifest. txt :
jar cfe my-app. jar packagel. MainClass packagel/*. class package2/*. class

Reference: https://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Be sure you are in the correct classpath directory (above your package directory). This is the same
directory level where you can compile . java files and execute . class files:

javac packagel/MyClass. java

java packagel. MyClass <arg0> <argl> .. <argN>

Executing a JAR

The following command executes a compiled JAR file:

java -jar my-app.jar <arg0> <argl> .. <argN>

https://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

systemd Timer

As a modern systemd replacement for chron , the following is an example of oneshot Unit
triggered periodically by a Timer.

Reference: https://www.buggycoder.com/network-backups-using-rsync/

Some people dislike systemd , but on a modern linux distro, it's the best way to keep
everything as "stock" and "plain vanilla" as possible.

Example oneshot Unit file:

/etc/systemd/system/<example-unit. service>

[Unit]

Description= <Example Unit Name>

#target requirements (may vary)
Requires=network. target

After=network. target

[Service]

Type=oneshot

#optional settings

Nice=19
StandardOutput=journal
I0SchedulingClass=best-effort
I0SchedulingPriority=5

ExecStart= <command> or </absolute/path/to/exec>

[Install]
WantedBy=multi-user. target

Example Timer file to execute the Unit:

https://www.buggycoder.com/network-backups-using-rsync/

/etc/systemd/system/<example-unit. timer>

[Unit]
Description= <Example Timer Name>

Requires=<example-unit>. service

[Timer]
OnCalendar=daily

Unit=<example-unit>. service

[Installl]

WantedBy=timers. target

Enable the Unit and Timer:

systemctl daemon-reload

systemctl enable <example-unit>. service

systemctl enable <example-unit>. timer

systemctl start <example-unit>. service

systemctl start <example-unit>. timer

Ensure all is well

journalctl -f -u <example-unit>. service

Bookstack Backup

Example shell script to backup Bookstack content:

must be run as root

cd /var/www/bookstack

mysqldump -u root bookstack > bookstack-$(date +"%Y-%m-%d").sql
git add -A && git commit -m "backup" && git push

Assumes:

e The MariaDB (or MySQL) database is named "bookstack"

e /var/www/bookstack is the bookstack root directory

e The bookstack root directory has been initialized as a git repository
e A git remote has been set

Citadel Backup

Example backup script:

must be run as root
cd /usr/local/citadel
git add -A && git commit -m "backup" && git push

Assumes:

e /usr/local/citadel has been initialized as a git repo and a remote has been set

Full Server Backup

Using dd:

Reference links:

https://wiki.archlinux.org/title/Rsync#Full_system_backup

https://unix.stackexchange.com/questions/132797/how-to-dd-a-remote-disk-using-ssh-on-local-

machine-and-save-to-a-local-disk

https://askubuntu.com/questions/890497/clone-a-remote-server-to-local-machine-via-ssh

What worked:

Run on my remote VPS, connecting back to local machine via my VPN:

sudo <something> # type in password, so you won't have to in next command
sudo dd bs=4M status=progress if=/dev/sda | gzip -1 - | ssh <local>@<vpn_ip> dd

of=backup. img. gz

The default local save location is into the home directory.

https://wiki.archlinux.org/title/Rsync#Full_system_backup
https://unix.stackexchange.com/questions/132797/how-to-dd-a-remote-disk-using-ssh-on-local-machine-and-save-to-a-local-disk
https://unix.stackexchange.com/questions/132797/how-to-dd-a-remote-disk-using-ssh-on-local-machine-and-save-to-a-local-disk
https://askubuntu.com/questions/890497/clone-a-remote-server-to-local-machine-via-ssh

Tox Bootstrap Node on
Debian

These steps have been tested on Debian 11

References:

e https://wiki.tox.chat/users/runningnodes

e https://github.com/TokTok/c-toxcore/tree/master/other/bootstrap_daemon

Install Dependencies:

e git (to clone the repo)

e libc6 (includes libm, libthread , librt)

e libconfig

e cmake

e libnacl (might not be necessary if libsodium is installed?)

e libsodium (I still had to install this, even with libnacl installed...)

sudo apt update

sudo apt install git libc6-dev cmake libconfig-dev libnacl-dev libsodium- dev

Clone latest Git repository & submodules:

e GitHub: TokTok/c-toxcore

In your home directory or wherever you prefer to do compilation work:

git clone https: //github. com/TokTok/c-toxcore. git
cd c-toxcore

git submodule update --init

Compile libtoxcore and tox-bootstrapd:

In the c-toxcore directory (you might be in it from the previous step):

https://wiki.tox.chat/users/runningnodes
https://github.com/TokTok/c-toxcore/tree/master/other/bootstrap_daemon
https://github.com/TokTok/c-toxcore

mkdir build
cd build
cmake ..
make

make install

Did it Compile OK?

Verify the output text from make is all - and tox-bootstrapd was built:

[100%] Linking C executable tox-bootstrapd
[100%] Built target tox-bootstrapd

Create a tox-bootstrapd User & Restricted Home Directory:

sudo useradd --home-dir /var/lib/tox-bootstrapd --create-home --system --shell /sbin/nologin
--comment "Account to run Tox's DHT bootstrap daemon" --user-group tox-bootstrapd

sudo chmod 700 /var/lib/tox-bootstrapd

Service & Configuration Files:

In the c-toxcore directory (cd .. if you're stillin build), copy the service and conf files to the
system locations. Keep in mind there is a directory structure under c-toxcore that is similar to the
structure under build , but the service and conf files are found under c-

toxcore/other /bootstrap daemon/ and the executable is found under c-

toxcore/_build/other/bootstrap_daemon/ .

Copy the service file to /etc/systemd/system/ :

sudo cp other/bootstrap daemon/tox-bootstrapd. service /etc/systemd/system/
If you will be using the default port number or a number greater than 1023 , you can simply copy

the service file and leave it as it is. Otherwise, you will need to un-comment the line
#CapabilityBoundingSet=CAP NET BIND SERVICE .

Copy the configuration file to /etc/ :

sudo cp other/bootstrap daemon/tox-bootstrapd. conf /etc/tox-bootstrapd. conf

Customize Configuration Settings:

Use nano or your favorite editor to edit /etc/tox-bootstrapd. conf :

sudo nano /etc/tox-bootstrapd. conf

At a minimum, edit your Message of the Day (MOTD), other bootstrap nodes, and probably also

your ports. A current list of public bootstrap nodes is displayed at https://nodes.tox.chat/.

port = 33445

keys file path = "/var/lib/tox-bootstrapd/keys"

pid file path = "/var/run/tox-bootstrapd/tox-bootstrapd. pid"

enable ipv6 = true

enable ipv4 fallback = true

true

enable lan discovery

enable tcp relay = true

tcp _relay ports = [443, 3389, 33445, 43334]

enable motd = true

motd = "Write Your Custom MOTD Here! (up to 255 chars)"

bootstrap nodes = (
{ // Tony (he's awesome)
address = "tox. abilinski. com"
port = 33445
public key = "10COOEB250C3233E343E2AEBAO7115A5C28920E9C8D29492F6D00B29049EDC7E"
o
{ // Cody (he's awesome too0)
address = "198.199. 98. 108"
port = 33445
public key = "BEFOCFB37AF874BD17B9A8FOFE64C75521DB95A37D33C5BDBOOE9CF58659C0O4F"
b
{ // Gabe (he's just a geek)
address = "104. 225. 141. 59"
port = 43334
public key = "933BA20B2E258B4C0D475B6DECE9OQC7E827FE83EFA9655414E7841251B19A72C"

https://nodes.tox.chat/

Install the tox-bootstrapd Executable:

Copy the tox-bootstrapd executable from build/other/bootstrap daemon/ to /usr/local/bin/ :

sudo

cp _build/other/bootstrap daemon/tox-bootstrapd /usr/local/bin/tox-bootstrapd

Enable & Start the systemd Service:

sudo
sudo
sudo

sudo

systemctl daemon-reload
systemctl enable tox-bootstrapd. service
systemctl start tox-bootstrapd. service

systemctl status tox-bootstrapd. service

Did the Service Start OK?

If systemctl start didn't produce any text and systemctl status shows _, then
you should be up and running!

Otherwise, scroll down/right (arrow keys) through the output text under systemctl status or try

some of these helpful troubleshooting tips.

You can see a list of services that are listening on ports with:

sudo netstat -tunlp

Bootstrap Node Public Key:

Your public key should be listed near the bottom of the log entries:

sudo grep "tox-bootstrapd" /var/log/syslog

Enable External Ports:

You may need to open ports listed in /etc/tox-bootstrapd. conf :

sudo ufw allow 33445
sudo ufw allow 443/tcp
sudo ufw allow 3389/tcp

https://github.com/TokTok/c-toxcore/tree/master/other/bootstrap_daemon#troubleshooting

If you're not using ufw, you probably should be:

sudo apt update
sudo apt install ufw
sudo ufw allow ssh

sudo ufw enable

You can limit a port to a specific network interface (e.g. your VPN tunnel) using:

sudo ufw allow in on <interface> to any port <number>

Test your Bootstrap Node:

You can test outside connectivity to your node here:

https://nodes.tox.chat/test

Nginx Reverse Proxy:

In case this is useful, here's some information on configuring nginx as a reverse UDP & TCP proxy:

https://wilsons.life/bookstack/books/server-provisioning/page/nginx-reverse-udp-tcp-proxy

That's all! Feel free to send me a message via Tox at:

CD9E37503A5B2DFB41947B9A0E4B921381340B49FC318FEB07250789C715DA3470885905869F

https://nodes.tox.chat/test
https://wilsons.life/bookstack/books/server-provisioning/page/nginx-reverse-udp-tcp-proxy

Nginx Reverse UDP & TCP
Proxy

Reference:

e https://docs.nginx.com/nginx/admin-guide/load-balancer/tcp-udp-load-balancer/

Nginx Reverse Proxy:

Maybe you have Nginx as a front-end server on your cloud VPS, and you prefer to run back-end
services on your own hardware, tunneled over a VPN. The following can be added to the top-level
nginx configuration (probably /etc/nginx/nginx. conf) to enable UDP and TCP reverse proxying to
your back-end service:

stream {

server {
listen 12345;
#TCP traffic will be forwarded
proxy pass <IP or domain>: 12345;

}
server {
listen 4444,
#TCP traffic will be forwarded
proxy pass <IP or domain>: 4444;
}
server {
listen 4444 udp;
#UDP traffic will be forwarded
proxy pass <IP or domain>: 4444;
}

Be sure the stream { ... } block is outside of the top-level nttp { ... } block.

https://docs.nginx.com/nginx/admin-guide/load-balancer/tcp-udp-load-balancer/

Install Git via PowerShell

It's easy!

Run:

winget install --id Git. Git -e --source winget

Then you'll see something like:

Found Git [Git. Git] Version 2.42.0

This application is licensed to you by its owner.

Microsoft is not responsible for, nor does it grant any licenses to, third-party packages
Downloading https: //github. com/git- for-windows/git/releases/download/v2. 42. 0. windows. 1/Git-
2. 42. 0-64-bit. exe

I 553 MB / 58.3 MB

Successfully verified installer hash
Starting package install...
The installer will request to run as administrator, expect a prompt.

Successfully installed

Even though it says The installer will request to run as administrator, expect a prompt. , | was
not required to enter an admin password, which is nice on an IT administered work laptop.

After installation, close the PowerShell window!

Open another PowerShell window and you should be able to check your git version:
git --version
You should see:

git version 2.42.0. windows. 1

You're good to go!

Create a flash drive image

Reference: https://superuser.com/questions/668485/creating-a-fat-file-system-and-save-it-into-a-

file-in-gnu-linux

Create a blank file:

dd if=/dev/zero of=test-disk.img bs=1024 count=SIZE status=progress
size = SIZE*bs

Format as FAT32:

mkfs. vfat test-disk. img

Mount:

sudo mkdir /mnt/test-dir

sudo mount -o loop test-disk.img /mnt/test-dir/

Copy files:

sudo rsync -rv --ignore-existing some directory/* /mnt/test-disk/

Unmount:

sudo umount /mnt/test-disk

sudo rmdir /mnt/test-disk

Clone to flash drive:

dd if=test-disk.img of=/dev/mmcblk0® bs=4M status=progress

https://superuser.com/questions/668485/creating-a-fat-file-system-and-save-it-into-a-file-in-gnu-linux
https://superuser.com/questions/668485/creating-a-fat-file-system-and-save-it-into-a-file-in-gnu-linux

Resize a flash drive image

Reference: https://askubuntu.com/questions/1174487/re-size-the-img-for-smaller-sd-card-how-to-

shrink-a-bootable-sd-card-image

Get a loop device:

Question: can | use the loop device that mount -0 loop assighed when | mounted the image?
Answer: you will need to unmount first, so you might need a new loop device. GParted can
open a loop device before unmounting, but cannot resize a mounted partition. After
unmounting, use losetup with an available loop device.

get a loop device number

sudo losetup -f

in this case: /dev/loopl5

attach the disk image to the loop device
sudo losetup /dev/loopl5 test-disk.img

Use GParted with the device:

sudo gparted /dev/loopl5

Right-click on the partition and select Resize/Move, and enter a new size.

Right-click and select Information. According to GParted (for this example), there is 980.47 MiB
Unallocated currently.

After completing resize, unload the loop device:

sudo losetup -d /dev/loopl5

Use fdisk to get number of sectors and unit (or block) size:

fdisk -1 test-disk. img

Disk /dev/loop15: 29.28 GiB, 31436800000 bytes, 61400000 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0O size (minimum/optimal): 512 bytes / 512 bytes

https://askubuntu.com/questions/1174487/re-size-the-img-for-smaller-sd-card-how-to-shrink-a-bootable-sd-card-image
https://askubuntu.com/questions/1174487/re-size-the-img-for-smaller-sd-card-how-to-shrink-a-bootable-sd-card-image

Disklabel type: dos
Disk identifier: 0x00000000

61400000*512 bytes to GiB

29.2778015 gibibytes

61400000*512 bytes to MiB = 29 980.4688 mebibytes

So we need to truncate up to 980 MiB (in this case, from GParted info) from the end of the file.

60000000*512 bytes to MiB = 29 296.875 mebibytes, which should work well in this case.

Now we use truncate to shorten the file:

truncate --size=$[(60000000+1)*512] test-disk.img

Now, might want to check/repair with GParted:

sudo losetup /dev/loopl5 test-disk.img
sudo gparted /dev/loopl5

https://www.google.com/search?q=61400000*512+bytes+to+GiB
https://www.google.com/search?q=61400000*512+bytes+to+MiB
https://www.google.com/search?q=60000000*512+bytes+to+MiB

BibleSD Duplication

The simplest (but longest) method to duplicate this BibleSD is to simply select the files through the
graphical interface, copy them onto your computer, and then onto new media. This approach
works on all operating systems.

A faster method to duplicate this BibleSD is to copy it as one image file to your computer, and then
copy that one image file onto a new microSD card or other flash media. On Mac or Linux this can
be accomplished without additional software, using only system commands. On Windows or other

operation systems, this requires software like Etcher.

Find the device name and mount point

Open a new Terminal window (CTRL+ALT+T on Ubuntu-based Linux distributions).

Type one of the following commands and press Enter:

Mac Linux

diskutil list df -h

This command displays a table of mounted disks and media.

For Mac, we will need the IDENTIFIER name (example: diskl). For Linux, we will need the
Filesystem name (example: /dev/mmcblk0) and the location Mounted On (example:
/media/giw/DCA2- 3AAQ).

To unmount the

Wait to connect the microSD card or other flash media that will receive the image file (or
disconnect if already connected).

Type this command into the Terminal and press the Enter key:

1s /dev

This command will display a list of devices connected to your computer.

Connect the microSD card or flash media to your computer and then repeat the same command.
You can type it again or press the UP arrow key to cycle through previous commands and then
press the Enter key.

https://etcher.balena.io/

Compare the difference between the two lists of devices to determine which device was
connected. On Linux, the name of the microSD card or flash media will probably be mmcb1ko , but
may be different in some cases.

Unmount

Write the image file to the flash media

Partial microSD Image

Instructions to partially clone the image from a microSD (or anything else), where the filesystem
does not cover the entire disk. For example, a 128GB microSD with a fresh RasPi image that only
encompasses ~5.4 GB of space.

Run sudo fdisk -1 to display partitioning details:

Disk /dev/mmcblk@: 119.38 GiB, 128177930240 bytes, 250347520 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xlaa4489a

Device Boot Start End Sectors Size Id Type
/dev/mmcblkOpl 8192 1056767 1048576 512M «c W95 FAT32 (LBA)
/dev/mmcblk0Op2 1056768 10600447 9543680 4.6G 83 Linux

In this case, sector size of 512 bytes multiplied by the End sector is the total space used by these
partitions.

10600447 * 512 bytes = 5.4GB

So divide that total size by whatever block size is preferred to use with dd, and round up to an
integer:

(10600447 * 512 bytes)/4MB < 1400

Finally, run dd with count:

sudo dd if=/dev/mmcblk® of=partial image. img bs=4M status=progress count=1400

Check the image with gparted:

sudo gparted partial image. img

Or, mount the partitions in the image using this technique:

https://www.google.com/search?q=10600447+*+512+bytes
https://www.google.com/search?q=%2810600447+*+512+bytes%29%2F4MB
https://unix.stackexchange.com/questions/342463/how-to-mount-multiple-partitions-from-disk-image-simultaneously

$ sudo mount -o loop, offset=4194304, sizelimit=536870912 . /partial image. img
/mnt/mount point/mount A

offset: 512 bytes * 8192 sectors = 4194304 bytes

sizelimit: 512 bytes * 1048576 sectors = 536870912 bytes

$ sudo mount -o loop, offset=541065216, sizelimit=4886364160 . /partial image. img
/mnt/mount point/mount B

offset: 512 bytes * 1056768 sectors = 541065216 bytes

sizelimit: 512 bytes * 9543680 sectors = 4886364160 bytes

If it's just a single partition image, then you can get away with simply this:

sudo mount -o loop partial image. img /mnt/mount point/

Apparently you can also use kpartx:

$ sudo kpartx -a partial image. img

$ sudo mount -o loop /dev/mapper/loopOp2 /mnt/mount point

after you're done:

$ sudo kpartx -d partial image. img

Installing BibleSuperSearch
on Debian

Basic software

e Apache?2
e MariaDB

sudo apt update && sudo apt install apache2 mariadb-server

Laravel dependencies

Reference: https://shape.host/resources/laravel-setup-debian-12-tutorial

Install Laravel dependencies:

sudo apt install php php-curl php-bcmath php-json php-mysql php-mbstring php-xml php-tokenizer
php-zip php-gd php-sqlite3

Bible SuperSearch source

Install Bible SuperSearch source files:

e API: https://www.biblesupersearch.com/downloads/

o Client: https://sourceforge.net/projects/biblesuper/files/

Extract and copy to:
/var /www/html/biblesupersearch api/

/var /www/html/biblesupersearch client/

This assumes you're using the default site, otherwise copy into the directory for whichever
Apache 'site' is enabled.

https://shape.host/resources/laravel-setup-debian-12-tutorial
https://www.biblesupersearch.com/downloads/
https://sourceforge.net/projects/biblesuper/files/

Configure Apache

Edit apache.conf:

sudo nano /etc/apache2/apache2. conf

AllowOverride All:

<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride All # change from None to All
Require all granted

</Directory>

Configure PHP:

sudo a2enmod php8.2 # change 8.2 to your version
sudo a2enmod rewrite

sudo systemctl restart apache2

Restart Apache:

sudo systemctl restart apache2

Configure MariaDB

References:

e https://www.digitalocean.com/community/tutorials/how-to-install-mariadb-on-debian-11

e https://raspberrytips.com/install-mariadb-raspberry-pi/

Start the MariaDB installation:

sudo mysql secure installation

Answer the following prompts:

o [HCTVgE=lpiae IS elge Rl I gelol M IR IS Leave blank, press enter
Switch to unix socket authentication [Y/n] nENelsal=lel=ISY-1aVAR=Ta\(=1aN |
o (Gl SR N el LIl e k@A PAaINa Should not change, enter n

e Enter Y (default) for all remaining questions

https://www.digitalocean.com/community/tutorials/how-to-install-mariadb-on-debian-11
https://raspberrytips.com/install-mariadb-raspberry-pi/

Start the DB prompt:

sudo mariadb

Create an admin account (set my_admin_password):

GRANT ALL ON *.* TO 'admin' @ localhost' IDENTIFIED BY '<my admin password>" WITH GRANT OPTION;

Create a biblesupersearch user (set my_password):

CREATE USER 'biblesupersearch' @ localhost' IDENTIFIED BY '<my password>';

Create a biblesupersearch database:

CREATE DATABASE biblesupersearch;

Grant privileges:

GRANT ALL PRIVILEGES ON biblesupersearch.* TO 'biblesupersearch' @ localhost';

Flush privileges:

FLUSH PRIVILEGES;

Exit the DB prompt:

exit

Configure Bible SuperSearch

Change directory to the root API directory:

cd /var/www/html

Copy .env.example to .env and edit:

sudo cp .env.example . env

sudo nano . env

Update the following lines:

APP _URL=http: //bible. local/biblesupersearch api/ # or whatever your root path is
DB DATABASE=biblesupersearch
DB USERNAME=biblesupersearch

DB _PASSWORD=<my password> # whatever database password was configured

Change ownership recursively to the httpd user (www-data) for biblesupersearch_api and
biblesupersearch_client directories:

sudo chown -R www-data biblesupersearch *

Bible SuperSearch admin console

Open the /public directory in a browser (relative to whatever the root path is):

http://bible.local/biblesupersearch_api/public

If you get a 404 Not Found error, try appending /index. php . If that appears to work, then
Apache is not rewriting Laravel routes correctly. This will need to be troubleshot and fixed
before the admin console will work correctly.

e Under the Bibles tab, select 100 rows to be displayed (drop-down at bottom), select all
(box at upper left corner), and click Install.

e Under the Options tab, set the Application URL to http://bible.local/biblesupersearch_api
(whatever the base URL should be).

Bible SuperSearch client

In the biblesupersearch client directory, copy config-example. js to config. js and edit the
following in config.js:

"apiUrl": "http: //bible. local/biblesupersearch api/public",

As a bug-workaround for Linux web clients, change client. os. toLowerCase() to client.os in
biblesupersearch.js

At this point you should be able to open http://bible.local/biblesupersearch _client/ and see a
functioning example!

http://bible.local/biblesupersearch_api/public
http://bible.local/biblesupersearch_api/public/admin/bibles
http://bible.local/biblesupersearch_api/public/admin/config
http://bible.local/biblesupersearch_api
http://bible.local/biblesupersearch_client/

